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4: Probability

What is probability? The probability of an event is its relative frequency (proportion) in the population.
An event that happens half the time (such as a head showing up on the flip of a fair coin) has probability
50%. A horse that wins 1 in 4 races has a 25% probability of winning.  A treatment that works in 4 of 5
patients has an 80% probability of success. 

Probability can occasionally be derived logically by counting the number of ways a thing can happen and
determine its relative frequency. To use a familiar example, there are 52 cards in a deck, 4 of which are
Kings. Therefore, the probability of randomly drawing a King = 4 ÷ 52 = .0769. 

Probability can be estimated through experience. If an event occurs x times out of n, then its probability
will converge on X ÷ n as n becomes large. For example, if we flip a coin many times, we expect to see
half the flips turn up heads. This experience is unreliable when n is small,  but becomes increasingly
reliable as n increases. For example, if a coin is flipped 10 times, there is no guarantee that we will
observe exactly 5 heads. However, if the coin is flipped 1000 times, chances are better that the
proportions of heads will be close to 0.50.

Probability can be used to quantify subjective opinion. If a doctor says “you have a 50% chance of
recovery,” the doctor believes that half of similar cases will recover in the long run. Presumably, this is
based on knowledge, and not on a whim. The benefit of stating subjective probabilities is that they can be
tested and modified according to experience. 

Notes:

• Range of possible probabilities: Probabilities can be no less than 0% and no more than 100% (of
course).

• Notation: Let A represent an event. Then, Pr(A) represents the probability of the event. 

• Complement: Let } represent the complement of event A. The complement of an event is its
“opposite,” i.e., the event not happening. For example, if event A is recovery following treatment,
then }represents failure to recover.  

• Law of complements: Pr(}) = 1 - Pr(A). For example, if Pr(A) = 0.75, then Pr(}) = 1!0.75 = 0.25. 

• Random variable: A random variable is a quantity that varies depending on chance. There are two
types of random variables,

• Discrete random variables can take on a finite number of possible outcomes. We study
binomial random variables as examples of discrete random variables. 

• Continuous random variables form an unbroken chain of possible outcomes, and can take on
an infinite number of possibilities. We study Normal random variables as examples of
continuous random variables. 
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Binomial Distributions

Binomial Random Variables

Consider a random event that can take on only one of two possible outcomes. Each event is a Bernoulli
trial. Arbitrarily, define one outcome a “success” and the other a “failure.” Now, take a series of n
independent Bernoulli trials. The random number of successes in n Bernoulli trials is a binomial
random variable.

Illustrative Example. Suppose a treatment is successful 75% of the time. The treatment is used in 4
patients. On average, 3 of the 4 patients will respond to treatment. However, it would be foolish to think
3 of 4 patients will always respond. The number of patients responding will vary from trial to trial
according to a binomial distribution (binomial probability mass function). For the current example, 
the binomial probability mass function is:

Number of successes Probability

0 0.0039

1  0.0469

2 0.2109

3 0.4219

4  0.3164

Binomial distributions are characterized by two parameters. These are:

n / the number of independent trials
p / the probability of success for each trial 

We use the notation X~b(n, p) to denote a given binomial distribution. In words, this is “the random
variable X is distributed as a binomial random variable with parameters n and p.” The distribution in the
table above is X~ b(4, 0.75).

Before calculating binomial probabilities we must first learn the combinatorics (“choose”) function.
The combinatorics function answers the question “How many different ways can I choose i items out of
n.” 

n iLet C  denote the number of ways to choose i items out of n:

where ! represents the factorial function, which is the product of the series of integers from n to 1. In
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symbols, n! = (n)(n - 1) (n - 2)(n - 3) . . . (1). For example, 3! = (3)(2)(1) = 6. By definition, 1! = 1 and
0! = 1.

Illustrative examples (Combinatorics). Three examples are presented:

• “How many ways are there to choose 2 items out of 3?” By formula, .

By logic, consider 3 items labeled A, B, and C. There are three different sets of two: {A, B}, {A, C}, or {B, C}.

• “How many ways are there to choose 2 items out of 4?” ; there are

6 ways to choose 2 items out of 4: {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, and {C, D}.

• How many ways are there to choose 3 items out of 7?” .  There are 35

ways to choose 3 items out of 7.

Binomial Formula

We are now ready to calculate binomial probabilities with this formula: 

where X represents the random number of successes, 
i is the observed number of successes, 
n and p are the binomial parameters, and 
q = 1 - p.

Illustrative Example. Recall the example that considers a treatment that is successful 75% of the time (p
= 0.75). The treatment is used in 4 patients (n = 4). “What is the probability of seeing 2 successes in 4
patients?” 

Given: n = 4 i = 2, p = 0.75 q = 1!0.75 = 0.25. 

4 2Calculation: ` Pr(X = 2) = C  (.75)  (.25)  = (6)(0.5625)(0.0625) = 0.2109.2 4!2
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Probability Mass Function

The listing of probabilities for all possible outcomes for a discrete random variable is the binomial 
probability mass function.

Illustrative Example. For a treatment that is successful 75% of the time used in 4 patients, the binomial
probability mass function is:

4 0The probability of 0 successes /  Pr(X = 0) = C  (0.75)  (0.25 ) = (1)(1)(0.0039) = 0.00390 4-0

4 1The probability of 1 success /  Pr(X = 1) = C  (0.75)  (0.25 ) = (4)(0.75)(0.0156) = 0.04691 4-1

4 2The probability of 2 successes /  Pr(X = 2) =  C  (0.75)  (0.25 ) = (6)(0.5625)(0.0625) = 0.21092 4-2

4 3The probability of 3 successes /  Pr(X = 3) =  C  (0.75)  (0.25 ) = (4)(0.4219)(0.25) = 0.42193 4-3

4 4The probability of 4 successes /  Pr(X = 4) = C  (0.75)  (0.25 ) = (1)(0.3164)(1)= 0.31644 4-4

In tabular form:

(No. of successes) i Pr(X = i)

0 0.0039

1  0.0469

2 0.2109

3 0.4219

4  0.3164

In graphical form: 

The areas under the bars in the histogram represent probabilities. For example, the bar corresponding to
2 out of 4 successes has a width of 1.0 and height of 0.2109. The area of this bar =  height × width = 1×
0.2109 = 0.2109, which is equal to the probability of observing 2 successes.
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Cumulative Probability

The cumulative probability is the probability of observing less than or equal to a given number of
successes. For example, the cumulative probability of 2 successes is the probability of 2 or less
successes, denoted Pr(X # 2). 

Illustrative example.  For the illustrative example, Pr(X # 2) = Pr(X = 0) + Pr(X = 1) + Pr(X = 2) =
0.0039 + 0.0469 + 0.2109 = 0.2617.

The cumulative probability distribution is the compilation of cumulative probabilities for all possible
outcomes. The cumulative probability distribution for the illustrative example is:

Pr(X # 0) = .0039
Pr(X # 1) = [Pr(X = 0) + Pr(X = 1)] = 0.0039 + 0.0469 = 0.0508
Pr(X # 2) = [Pr(X # 1) + Pr(X = 2)] = 0.0508 + 0.2109 = 0.2617
Pr(X # 3) = [Pr(X # 2) + Pr(X = 3)] = 0.2617 + 0.4219 = 0.6836
Pr(X # 4) = [Pr(X # 3) + Pr(X = 4)] = 0.6836 + 0.3164  = 1.0000

In tabular form:

No. of successes

i

Cumulative Probability

Pr(X # i) 

0 0.0039

1 0.0508

2 0.2617

3 0.6836

4 1.0000

Cumulative probabilities corresponds to areas under the bars to the LEFT of points. The shaded region
in the figure below corresponds to Pr(X #2) for the illustrative example.
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 Normal Probability Distributions

The previous section used the binomial formula to calculate probabilities for binomial random variables.
Outcomes were discrete, and probabilities were displayed with probability histograms. We need a
different approach for modeling continuous random variables. This approach involves the use of density
curves.

Density curves are smoothed probability histograms. A Normal density curve is superimposed on this
age distribution: 

The next curve shows the same distribution with the six left-most bars shaded. This corresponds to
individuals less than or equal to 9-years of age. There were 215 such individuals, making up about one-
third of the entries. Therefore, Pr(X # 8) . a. 

When working with Normal probabilities, we drop the histogram and look only at the curve.
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Normal distributions are characterized by two parameters: : and F. Mean : locates the center of the
distribution. Changing : shifts the curve along its X axis.

Standard deviation s determines the spread. 

You can see the size of standard deviation F by identifying “points of inflection” on the curve. Points of
inflection are where the curve begins to turn.

This allows you to scale the axis. This is important because: 

• 68% of the area under the curve lies within one standard deviation of the mean (: ± F)
• 95% lies within 2 standard deviations of the mean (: ± 2F)
• 99.7% lies within 3 standard deviations of the mean (: ± 3F)

This fact is known as the 68-95-99.7 rule for Normal distributions.
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This characteristic of Normal curves is referred to as the 68–96–99.7 rule.

Illustrative example: Wechsler IQ Scores. Wechsler scores measure intelligence by providing scores
that vary according to a Normal distribution with : = 100 and F = 15. Let X represent Wechsler scores:
X~N(100, 15).  Based on the 68 – 95 – 99.7 rule, we know that 68% of the scores lie in the range 100 ±
15 = 85 to 115, 95% lie in the range 100 ± (2)(15) = 70 to 130, and 99.7% lie in the range 100 ± (3)(15)
= 55 to 145.

To determine probabilities for Normal random variables, we first standardize the scores. The

standardized values are called z-scores:

Standardization merely re-scales the variable so that it has : = 0 and F = 1. Z  Data that are larger
than the mean will have positive z scores. Data points that are smaller than the mean have
negative z scores. A  z score of 1 tells you that the value is one standard deviation above the
mean. A z score !2 tells you the value is two standard deviations below the mean. 

Illustrative example: Weschler. Weschler intelligence scores vary according to a Normal
distribution with mean : = 100 and F = 15. An individual with a score of 115 has a z =
(115!100) / 15 = 1.00 or 1.00 standard deviations above the mean.  

Illustrative example: Pregnancy length. Uncomplicated gestational lengths (from last
menstrual to birth) vary according to a Normal distribution with mean : = 39 weeks and standard
deviation F = 2 weeks. A woman whose pregnancy lasts 36 weeks has z = (36 ! 39) / 2 = !1.5,
or 1.5 standard deviations below average. 
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Calculating Normal probabilities

Once a data point is standardized, you can use a Standard Normal table (“z table”) to look up
its cumulative probability. Our z table (back of lecture notes and online) looks like this:

The Normal z score of 1.96 (left column 1.9, top row 0.06) is pointed-out. The table entry lets us
know that it has cumulative probability 0.9750. Graphically: 

 .975pNotation: Let z denote a Normal z-score with cumulative probability p. For example, z  =
1.96. 

We can find the cumulative probability for any value that comes from a a Normal distribution by
following these steps:

1. State the problem
2. Standardize the values
3. Optional: Draw the curve (with landmarks)
4. Use the z table to determine the cumulative probability
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Illustrative example: Wechsler. Recall that Wechsler intelligence scores vary according to a
Normal distribution with mean : = 100 and standard deviation F = 15. What proportion of
Wechsler scores are less than 129.4?

1. State: Let X represent Wechsler scores: X~N(100, 15). We want to know Pr(X #
129.4).

2. Standardize: The score of 129.4 has z = (129.4 ! 100) / 15 = 1.96.  
3. Draw: See curve, prior page.
4. z Table: Pr(X # 129.4) = Pr(Z # 1.96) = 0.9750.

Illustrative example: Pregnancy length. Uncomplicated human gestation varies according to a
Normal distribution with : = 39 weeks and F = 2 weeks. What proportion of pregnancies lasts
less than 41 weeks? 

1. State: Let X represent gestational length: X~N(39, 2). We want to know Pr(X # 41).
2. Standardize: z = (41 ! 39) / 2 = 1 (i.e., one standard deviation above average). 
3. Draw: optional.
4. z Table: Pr(X # 41) = Pr(Z # 1) = 0.8413. About 84% of pregnancies last 41 weeks or

less. 

Probabilities above a certain value (right-tails). The z table includes cumulative probabilities
(“left-tails”). When you need to probabilities greater than points (right-tails) use the fact: 

(Area under the curve in the right-tail) = 1 ! (Area under the curve in the left-tail) 

For example, in the above pregnancy length illustration, the probability of a gestation greater
than or equal to 41 weeks = 1 ! (probability less than or equal to 41 weeks) = 1 ! 0.8413 =
0.1587,  or about 16%.

Probabilities for observations between certain values. You can calculate areas under the curve
between any two points (call them a and b) by subtracting their cumulative probabilities
according to the formula Pr(a # Z # b) = Pr(Z # b) !Pr(Z # a). For example, gestations less than
35 weeks are “premature.” Those more than 40 weeks are “post-date.”  What proportion of births
fall between these values?

1. State: X~N(39, 2). We are looking for Pr(35 # X # 40).
2. Standardize: For 35 weeks, z = (35 ! 39) / 2 = !2. For of 40 weeks, z = (40 ! 39) / 2 =

0.5.
3. Draw (optional, not shown).
4. Use z table: Pr(35 # X # 40) = Pr(!2 # Z # 0.5) = Pr(Z # 0.5) !Pr(Z #!2) = 0.6915 !

0.0228 = 0.6687 or about two-thirds of the pregnancies.
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