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“When will we ever use this?”  This is a question that every teacher has

heard at some point or at several points in time.  But a better question would be,

“Where has this been used this in the past?”  It is important to not only look to

the future, but to also look to the past.  To fully understand a topic, whether it

deals with science, social studies, or mathematics, its history should be explored.

Specifically, to fully understand geometric constructions the history is definitely

important to learn. As the world progresses and evolves so too does geometry.

In high school classrooms today the role of geometry constructions has

dramatically changed.

In order to understand the role of geometry today, the history of geometry

must be discussed.  As Marshall and Rich state in the article, The Role of History in

a Mathematics Class [8],

“…history has a vital role to play in today’s mathematics

classrooms.  It allows students and teachers to think and talk about

mathematics in meaningful ways.  It demythologizes mathematics

by showing that it is the creation of human beings.  History

enriches the mathematics curriculum.  It deepens the values and

broadens the knowledge that students construct in mathematics

class.”

This quote truly sums up the importance of relating the past to the present.

Students will benefit from knowing about how mathematical topics arose and

why they are still important today.

To thoroughly examine the history of geometry, we must go back to

ancient Egyptian mathematics.  A topic that often amazes people is the beautiful

geometry in Egyptian pyramids.  The mathematics and specifically geometry
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involved in the building of these pyramids is extensive.  From Egypt, Thales

brought geometric ideas and introduced them to Greece.  This then  led the

important evolution of  Greek deductive proofs.  Thales is known to have come

up with five theorems in geometry [14].

1. A circle is bisected by any diameter.

2. The base angles of an isosceles triangle are equal.

3. The vertical angles between two intersecting straight lines are equal.

4. Two triangles are congruent if they have two angles and one side

equal.

5. An angle in a semicircle is a right angle.

However, the title of the “father of geometry” is often given to Euclid.

Living around the time of 300 BC, he is most known for his book The Elements.

He took the ideas of Thales and other mathematicians and put them down in an

organized collection of definitions, axioms and postulates.  From these basics, the

rest of geometry evolves.  In The Elements, the first four definitions are as follows:

1. A point is that which has no part.

2. A line is breadthless length.

3. The extremities of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

Sir Thomas Heath wrote a respected translation of Euclid’s The Elements in 1926

entitled The Thirteen Books of Euclid’s Elements [11].  This translation seems to be

the most accepted version of Euclid’s writings given modifications and

additions.
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Since the time of Euclid there have been three famous problems which

have captivated the minds and of many mathematicians.  These three problems

of antiquity are as follows:

1. Squaring the Circle

2. Doubling the Cube

3. Trisecting an Angle.

Far back in history and to this present day, these problems are discussed in

detail.

In early geometry, the tools of the trade were a compass and straightedge.

A compass was strictly used to make circles of a given radius.  Greeks used

collapsible compasses, which would automatically collapse.  Nowadays, we use

rigid compasses, which can hold a certain radius, but is has been shown that

construction with rigid compass and straightedge is equivalent to construction

with collapsible compass and straightedge.  However, compasses  have changed

dramatically over the years.  Some compasses have markings used to construct

circles with a given radius.  Of course, under the strict rules of Greeks, these

compasses would not have been allowed.
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More strictly, there were no markings on the straightedge.  A straightedge was to

be used only for drawing a segment between two points.  There were very

specific rules about what could and could not be used for mathematical

drawings.  These drawings, known as constructions, had to be exact.  If the rules

were broken, the mathematics involved in the constructions was often

disregarded.  When describing these concepts to students nowadays, showing

pictures of ancient paintings with these tools help illustrate the importance and

commonplace of geometry and these aforementioned tools.

A portion of Raphaello Sanzio’s painting The School of Athens from 16th century

The Measurers: A Flemish Image of Mathematics in the 16th century
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In regards to the history of constructions, a Danish geometer, Georg Mohr,

proved that any construction that could be created by using a compass and

straightedge could in fact be created by a compass alone.  This surprising fact

published in 1672 is normally credited to the Italian mathematician, Lorenzo

Mascherone from the eighteenth century.   Hence, constructions created using

only compasses are called Mascheroni constructions [19].

After Euclid, geometry continued to evolve led by Archimedes,

Apollonius and others.  However, the next mathematicians to make a dramatic

shift in the nature of geometry were the French mathematicians, René Descartes

and Pierre de Fermat, in the seventeenth century, who introduced coordinate

geometry.  This advance of connecting algebra to geometry directly led to other

great advances in many areas of mathematics.

Non-Euclidean geometry was the next major movement.  János Bolyai,

following the footsteps of his father, attempted to create a new axiom to replace

Euclid’s fifth axiom.  Around 1824, this study led to development of a new

geometry called non-Euclidean geometry.  Another mathematician that made

contributions to the formation of non-Euclidean geometry was Nikolai Ivanovich

Lobachevsky.  In 1840, Lobachevsky published Géométrie imaginaire [12].  Because

of Bolyai and Lobachevsky’s direct connection to Gauss, some believe that non-

Euclidean geometry should in fact be credited to Gauss [15].

Even now, geometry continues to progress.  In addition, how schools

teach geometry has continued to change.  In the past, compass and straightedge

constructions were a part of the curriculum.  However, in most recent years,

constructions have faded out.  In older textbooks, constructions were entire
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chapters.  However, in newer textbooks, constructions are in the middle of

chapters and discussed very briefly.

Instead of concentrating on paper and pencil, compass and straightedge

constructions, current books tend to emphasize the use of dynamic computer

software, such as Geometer’s Sketchpad.    The sloppiness and inaccuracy of

man-made constructions could be avoided by the use of technology.  Though

there are still educators that believe that using this technology is not true

geometry, most realize the benefits that such software can have on

comprehension.

Will true Euclidean constructions using a compass and straightedge on

paper soon be a thing of the past?  Will it be another lost mathematical concept

like finding square roots and logarithms?  Will it always been seen as an

important link to the past? Will it be recognized as important but is replaced by

constructions using technology?

As a link to the past, students might find constructions interesting when

related to the three famous problems of antiquity of circle squaring, cube

duplicating, and angle trisecting.  These problems went unsolved for many years

under the Greek rules of constructions.  It was not until several hundred years

later that they were shown to be impossible using only a compass and

straightedge.  The mathematics in of circle squaring, cube duplicating, and angle

trisecting is interesting and can lead to good discussions.

The basics of constructions must be discussed before the complexity of the

three ancient problems can be explained.   The ancient Greeks’ way of

representing numbers was cumbersome, with no symbol for 0 and no place-

value.  Perhaps as a consequence, they did arithmetic geometrically.  We will use
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modern notation to analyze what numbers could be constructed by straightedge

and compass and to study the three ancient problems.

In order to make arithmetic constructions, two segments, one of length x

and the other length y, and a unit length of 1 are given.  Through basic geometry

and algebra, other related lengths can be created.  Five arithmetic constructions

are   x y+ ,   x y− ,   xy ,   x y , and   x . In order to carry out these arithmetic

constructions, we must first be able to construct a parallel line.

Parallel lines:

Given:   AB  and point C not on line   AB

Construct: a line parallel to   AB .

1. With a straightedge, draw   AC .

2. With a compass, construct a circle

with center at A and a radius of   AB .

Let D be the point of intersection of

this circle with   AC .

3. With a compass, construct a circle with center at C and a radius of   AB .

Let E be the point of intersection, not between A and C,  of this circle

with   AC .

4. With a compass, construct a circle with center at E and a radius of   DB .

Let F be the point of intersection of this circle and circle C.

5. With a straightedge, connect points C and F.  Then 
  
AB CF .

G

F

E

D

A

C

B
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Addition:

Given: two lengths x and y

Construct:   x y+

1. With a straightedge, draw   AD , so that   AD x y> + .

2. With a compass, construct a circle with center at A and a radius of length

x. Let B be the point of intersection of this circle with   AD .

3. With a compass, construct a circle with center at B and a radius of length

y. Let C be the point of intersection of this circle with   BD.

4. With a straightedge, connect points A and C.  Then   AC x y= + .

Thus, the construction of a addition is possible.

Subtraction:

Given: two lengths x and y, where   x y>

Construct:   x y−

1. With a straightedge, draw   AD .

2. With a compass, construct a circle with

center at A and a radius of length x. Let

B be the point of intersection of this

circle with   AD .

3. With a compass, construct a circle with center at B and a radius of length

y. Let C be the point of intersection of this circle with   AB .

4. With a straightedge, connect points A and C.  Then   AC x y= − .

Thus, the construction of a difference is possible.

CA DB

A DB C
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The details of three of the arithmetic constructions,   xy ,   x y , and   x , make use of

similar triangles as shown below.

Multiplication:

Given: three lengths x, y and unit 1

Construct:   xy

1. With a straightedge, draw   AF so that

    AF x> +1 .

2. With a compass, construct a circle with

center at A and a radius of length 1. Let

B be the point of intersection of this

circle with   AF .      AB = 1

3. With a compass, construct a circle with center at B and a radius of length

x. Let C be the point of intersection of this circle with   BF .    BC x=

4. With a straightedge, draw   AG, with G not on   AF .

5. With a compass, construct a circle with center at A and a radius of length

y. Let D be the point of intersection of this circle with   AG.    AD y=

6. With a straightedge, construct   DB.

7. Construct the line parallel to   DB passing through point C.

8. Let E be the intersection of the parallel line and   AG.

9. With a straightedge, connect points D and E.  Then   DE xy= .

E

A B

D

C F

G
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Since 
  
BD CE ,     ∆ ∆ABD ACE~  by Angle-Angle Similarity.  Therefore, the

following proportion holds true:
    

1
x

y
DE

= ,   DE xy= .  Thus, the construction of a

product is possible.

Division:

Given: three lengths x, y and unit 1

Construct:   y x

1. With a straightedge, draw   AF .

2. With a compass, construct a circle with

center at A and a radius of length x. Let

B be the point of intersection of this

circle with   AF .    AB x=

3. With a compass, construct a circle with center at A and a radius of length

1. Let C be the point of intersection of this circle with   AF .      AC = 1

4. With a straightedge, draw   AG, with G not on   AF .

5. With a compass, construct a circle with center at A and a radius of length

y. Let D be the point of intersection of this circle with   AG.    AD y=

6. With a straightedge, construct   DB.

7. Construct the line parallel to   DB passing through point C.

8. Let E be the intersection of the parallel line and   AG.

9. With a straightedge, connect points A and E.  Then   AE y x= .

E

A B

D

C F

G
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Since 
  
BD CE ,     ∆ ∆ABD ACE~  by Angle-Angle Similarity.  Therefore, the

following proportion holds true:
    

1
x

AE
y

= ,   AE y x= .  Thus, the construction of a

quotient is possible.

Square Root:

Given: two lengths x and unit 1

Construct:   x

1. With a straightedge, draw   AF .

2. With a compass, construct a circle with

center at A and a radius of length 1. Let

B be the point of intersection of this

circle with   AF .      AB = 1

3. With a compass, construct a circle with center at B and a radius of length

x. Let C be the point of intersection of this circle with   BF .    BC x=

4. Construct the midpoint D of   AC .

5. With a compass, construct a circle with center at D and a radius of length

  DA .

6. Construct a line perpendicular to   AC  passing through point B.

7. Let E be the point of intersection of this perpendicular line and circle D.

8. With a straightedge, connect points B and E.  Then   BE x= .

E

DA B C F
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Since   AC BE⊥  and   AE EC⊥ ,     ∆ ∆ABE EBC~  by Angle-Angle Similarity.  Therefore,

the following proportion holds true: 
    

1
BE

BE
x

= ,     x BE= 2,   BE x= .  Thus, the

construction of a square root is possible.

These five constructions are crucial to the explanation of why the three

geometric problems of antiquity are indeed impossible.  Since the rules of

addition, subtraction, multiplication, division, and square rooting are possible,

the art of constructing numbers using such rules is possible.  Numbers

constructed using straightedge and compass are called constructible numbers.  In

terms of field theory, these numbers must lie in certain quadratic extensions of

the rationals.

Since only a compass and straightedge can be used, the only constructions

that can be created are segments and circles.   Since an intersection point is often

what is drawn, only an arc of a circle is used and not the entire circle.  The

construction of new points comes from the intersection of two lines, two circles,

or a line and a circle.  To find the coordinates of these intersections, the resulting

equations would either be linear or quadratic.  In either case, the equations are

generally simple to solve either using basic arithmetic to solve linear equations or

the quadratic formula to solve quadratic equations.  Thus, the solution will be a

number obtained from given numbers using the basic operations of addition,

subtraction, multiplication, division, or taking the square root.  All three of the

impossible problems of antiquity are unsolvable under Greek construction rules

because solutions would not have these characteristics.  However, the proofs of

showing the impossibility of these problems did not truly come about until the

19th century when geometric concepts could be related to algebraic concepts.
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The saying “squaring a circle” has been used throughout the years.   The

metaphor is used to describe someone trying to attempt something that is

impossible.  From the most ancient documents, dating back as far as 1550 BC, to

more recent documents, the problem of squaring the circle has been recorded.

Of the three ancient problems, the most talked about in recent years is the

squaring of a circle, sometimes referred to as the quadrature of the circle.  This

construction entails constructing a square whose area equals that of a given

circle.  It was not until 1882 that Carl Louis Ferdinand von Lindemann finally

proved this to be impossible [13].

To describe this problem in mathematical detail, assume to be given some

circle with the radius measuring 1.  Therefore the area of the circle is

    π π πr2 21= ( ) = .  A square with the same area would result in     s
2 = π  therefore

  s = π .   In order to construct a square with the same area, the length of a side of

the square must be π .   With the constructions that we know are possible,

taking the square root of a number is no problem.  However creating a segment

with a length of π is a problem since π cannot be created by the simple operations

of addition, subtraction, multiplication, or division.  It is not debated that a

construction can be made ever so close to π.   However, a true segment of length

π cannot be constructed.

Lindemann proved that π was a transcendental number therefore proving

the construction of the number π was impossible.  Saying that π is transcendental

is the same as saying that π is not the root of any algebraic equation with rational

coefficients.  Even after Lindemann proved that this construction was impossible,

many people still attempted to come up with a way to create π.  Many so-called
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proofs were presented but in the end all of them have been discredited.  So in

fact it is impossible to construct a square with an area equal to that of a given

circle.

The next two problems of antiquity, doubling the cube and trisecting an

angle, again are impossible using only a compass and an unmarked straightedge.

However, many mathematicians have shown that both constructions are possible

if a marked straightedge is used.  But under the Greeks’ most rigorous rules, only

the unmarked straightedge could be used for drawing segments.  For both

problems, we show that a certain cubic equation does not have rational roots.  It

then follows that the roots cannot lie in a quadratic extension of the rationals,

and so the problem cannot be solved with straightedge and compass.

In keeping with the rules of the Greeks, doubling the cube is constructing

a cube with twice the volume as a given cube, of course using only a compass

and straightedge.  This problem is known as doubling the cube, duplicating the

cube, and the Delian problem.  During the time of the Greeks this problem was

the most famous.  However over the years the problem of squaring the circle has

overshadowed this now runner-up.

This problem has an interesting history all to itself.  Of course the accuracy

of these stories themselves has been questioned. The first story is that of Glaucus’

tomb that was originally a cube measuring one hundred feet in each direction.

Minos was not happy with the size of the tomb and ordered it to be made double

the size.

The next and more common story is that of the Delians, which is why this

problem is sometimes referred to as the Delian problem.  Some say that the

problem of doubling the cube originated with this story.  Around 430 BC there
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was a major plague in Athens that in the end claimed the lives of nearly one

quarter of the population.  During the height of the plague Athenians asked for

guidance from the Oracle at Delos as to how to appease the gods so that the

plague would come to an end.  The Delians were guided to double the size of the

altar to the god Apollo.   At first the craftsmen thought to double the length of

each side of the altar.  However, they soon realized that this did not double the

size of the altar but in fact it would create an altar eight times the size of the

original.  After exhausting their ideas, the Delians asked Plato for advice.  He

responded that the Oracle in fact wanted to embarrass the Greeks for their

ignorance of mathematics, primarily their ignorance of geometry.  After that

time, this problem became so popular that it was studied in detail at Plato’s

Academy.

Mathematicians attempted to solve the problem with no success.  Finally,

Hippocrates of Chios showed that the problem was simply the same as finding a

solution to     x a3 32= , where   a is a given segment.  Furthermore line segments of   x

and   y  may be found such that:

 
    

a
x

x
y

y
a

= =
2

which leads to…

    

a
x

a
x

a
x

x
y

y
a

3

3

3

2

1
2

= 





= 



















=
    

a
x
x a

3

3

3 3

1
2
2

=

=

When showing the impossibility of doubling the cube using only a compass and

straightedge, this information plays an important role.
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The impossibility of doubling the cube is equivalent to the impossibility of

solving     x
3 2 0− =  with only a compass and straightedge.  Linking again back to

the history of the Delians, the number   23  is sometimes referred to as the Delian

constant [20].

A cube of side length one would have a volume of   1 13 = .  Doubling the

volume would produce a new side length of   23  so that the volume would be

  
2 23

3( ) = .  In order to construct a cube with twice the volume,     x
3 2 0− =  must

have rational roots.  We will show that     x
3 2=  is irreducible over the rationals,

and thus its roots will not be in any quadratic extension of the rationals.

Assume that     x
3 2 0− =   does have a rational root, 

  

p
q

 where 
  

p
q

 is

irreducible.  Then

    

p
q

p
q

q
p
q

q

p q

p q









 − =

− =

−








 = ( )

− =

=

3

3

3

3
3

3
3

3 3

3 3

2 0

2 0

2 0

2 0

2

Since      p q3 32=  and 2 is prime, 2 divides   p . If 2 divides p, then let     p r= 2 .

 

    

p q

r q

r q

r q

3 3

3 3

3 3

3 3

2

2 2

8 2

4

=

( ) =

=

=
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This implies that 2 divides q also.  But this is a contradiction because if

that was the case then 
  

p
q

 would have been reducible. Therefore,     x
3 2 0− =  does

not have a rational root and hence the solutions are not constructible.

An alternate way to show this is impossible is to use the Rational Roots

Theorem [7].

Rational Zero Theorem (Rational Roots Theorem):

If a polynomial function,

      ƒ( ) = + + + + + +−
−

−
−x a x a x a x a x a x an

n
n

n
n

n
1

1
2

2
2

2
1 0L ,

has integer coefficients, then every rational zeros of ƒ has the

following form:

 
    

p
q

a
an

=
factor of constant term 

factor of leading coefficient 
0

Therefore, the possible rational roots for     x
3 2 0− =  would be   ±1 or   ±2 .  But none

of these are solutions to     x
3 2 0− = .  Since,     x

3 2 0− =  has no rational roots, then

the solutions to     x
3 2 0− =  are not constructible.

The third historic but probably least popular problem is trisecting an

angle.  Again, the name describes the problem, dividing a given angle into three

smaller angles all of the same measure.  One of the most famous trisection of an

angle solutions, using a compass and marked straightedge, comes from

Archimedes.  There are two different constructions that can be completed.

However, both use the same overall concepts.
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Given:    ∠ABC  to be trisected

1. Using a compass, construct a circle with

center B and radius   AB , where

  AB BC= .

2. Mark the distance between A and B.

3. Line up the marked straightedge with point A.  Let D be the point of

intersection of this straightedge and   BC .  Let E be the point of intersection

of circle A and   AD .

4. Adjust the straightedge until   AB DE= . (This is the tricky part.)

5. Construct a line parallel to   AD  passing through point B.  Let F be the

point of intersection of this parallel line and circle B.

6. Then 
    
m FBC

m ABC
∠ =

∠
3

Proof:

Given:   AB DE= ,   m ADB∠ = α

Prove: 
    
α =

∠m ABC
3

Since   EB ED= ,   m EDB m EBD∠ = ∠ .

Let     m ADB∠ = α , then   m ADB m EBD∠ = ∠ = α .

In a triangle, the exterior angle is equal to the sum of the two remote interior

angles, therefore     m AEB∠ = 2α .

Since all radii are congruent,   BA BE= .

Since   BA BE= ,     m AEB m BAE∠ = ∠ = 2α .

F
E

B C

A

D

F
E

B C

A

D
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Since 
  
AD BF ,    m DAB m ABF∠ = ∠ = 2α . (alternate interior angles are congruent)

and   m ADB m FBC∠ = ∠ = α . (corresponding angles are congruent).

Using the angle addition postulate,

 

    

m ABC m ABF m FBC

m ABC

m ABC

m ABC

∠ = ∠ + ∠

∠ = +

∠ =

=
∠

2
3

3

α α

α

α

.

Thus   ∠ABC  is trisected using a compass and marked straightedge.

The next construction uses similar geometric rules but is constructed in a

slightly different manner.

Given:    ∠ABC  to be trisected

1. Construct a line parallel to   BC  passing

through point A.

2. Using a compass, construct a circle with

center A and radius   AB .

3. Mark the distance between A and B.

4.  Line up the marked straightedge with

point B.  Let D be the point of

intersection of this straightedge and the

line parallel to    BC .  Let E be the point

of intersection of circle A and   BD.

5. Adjust the straightedge until   AB DE= .  (This is the tricky part.)

6. Then 
    
m DBC

m ABC
∠ =

∠
3

E

A

B C

D

A

B C
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Proof:

Given:   AB DE=

Prove: 
    
m DBC

m ABC
∠ =

∠
3

Since all radii are congruent,   AB AE= .

    

m ADB mFB mGE

m FAB m GAE

∠ = −( )
= ∠ − ∠( )

1
2
1
2

Since   DE AE= ,   m GAE m ADE∠ = ∠ .

Furthermore,   ∠ADE could also be named   ∠ADB

By substitution, 
    
m ADB m FAB m ADB∠ = ∠ − ∠( )1

2
.

    

m ADB m FAB m ADB

m ADB m FAB m ADB

m ADB m FAB

m ADB
m FAB

∠ = ∠ − ∠( )

∠ = ∠ − ∠

∠ = ∠

∠ =
∠

1
2

2
3

3

Since 
  
AD BC , alternate interior angles are congruent.    m FAB m ABC∠ = ∠

Finally, by substitution, 
    
m ADB

m ABC
∠ =

∠
3

.

Again since 
  
AD BC , alternate interior angles are congruent.    m ADB m DBC∠ = ∠

A different method, created by Hippias of Ilis, shows how to trisect an

angle using a curve called the Quadratrix of Hippias.  Still another method was

credited to Hippocrates of Chios.  Both methods are accurate but again go

against the rigid rules set out by the Greeks, which restricts the tools to only a

compass and unmarked straightedge.

GF

E

A

B C

D
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 A special characteristic of this problem that the others do not have is that

some angles can be trisected, while others cannot.  In the other two problems it is

always impossible to square a circle or double a cube.   However, if even one

angle cannot be trisected, then we say that the trisection of an angle in general is

impossible.  Early on, Gauss always claimed that doubling a cube and trisecting

an angle were impossible, but gave no proof.  However, Pierre Laurent Wantzel

proved these problems impossible in an 1837 publication [19].   He showed that

the problem of trisecting an angle was the same as solving a cubic equation.

Knowing this, he showed that few cubics could be solved using a compass and

straightedge only.  Therefore, he proved that most angles could not  be trisected.

The most common example of an angle that cannot be trisected is 60˚.  A

60˚ angle is easily constructed by creating an equilateral triangle.  However,

trisecting a 60˚ angle is another problem all together.  Not only is it not easy, it is

not possible.  In order to trisect an angle of 60˚, an angle of 20˚ must be able to be

constructed.  This is the same as constructing the length of the cosine of 20˚.   In a

unit circle, the lengths of the sides of a right triangle can be given in terms of

trigonometric functions of its angles.  The horizontal length is cosine of θ  and the

vertical length is sine of θ .  Thus cosine of 20˚ could be constructed if an angle of

20˚ could be constructed, that is, if we could trisect a 60˚ angle.  The impossibility

of constructing cosine of 20˚ comes from the inability to find a constructible

solution to a cubic equation.
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The trigonometric relationship,     cos cos cos3 4 33x x x( ) = ( ) − ( ), is necessary for the

proof.

    

cos cos cos sin sin

cos cos sin sin sin cos

cos cos cos sin cos

cos cos sin cos

3 2 2

2

1 2

2 1 2

2 2

2 2 2

2 2

x x x x x

x x x x x x

x x x x x

x x x

( ) = ( ) ( ) − ( ) ( )
= ( ) ( ) − ( )( ) − ( ) ( ) ( )( )
= ( ) ( ) − − ( )( )( ) − ( ) ( )

= ( ) ( ) −( ) − ( ) xx

x x x x

x x x x

x x x

( )

= ( ) − ( ) − − ( )( ) ( )
= ( ) − ( ) − ( ) + ( )

( ) = ( ) − ( )

2 2 1

2 2 2

3 4 3

3 2

3 2

3

cos cos cos cos

cos cos cos cos

cos cos cos

Why is it impossible to construct the cosine of 20˚?

  

cos

cos

60 1 2

3 20 1 2

=

⋅( ) =

  

cos cos cos

cos cos

cos cos

cos cos

3 20 4 20 3 20

4 20 3 20 1 2

4 20 3 20 1 2 0

8 20 6 20 1 0

3

3

3

3

⋅( ) = ( ) − ( )
− =

− − =

− − =

if     x = cos ˚20 , then     8 6 1 03x x− − = .

We show that this cubic equation has no rational roots, and so cosine of 20˚ is not

constructible.

The equation,     8 6 1 03x x− − = , does not have any rational roots because

using the Rational Roots Theorem, the only possible rational roots are

  
± ± ± ±

1
8

1
4

1
2

1, , , .  None of these possibilities are roots. Therefore, the solutions to

    8 6 1 03x x− − =  are not constructible, so cosine of 20˚ cannot be constructed with

a compass and straightedge alone.  In conclusion, the 60˚ angle cannot be

trisected with a compass and straightedge alone.
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The level of some of the mathematics necessary to understand the proofs

of the impossibility of the problems of antiquity is well above the high school

level.  However, most of the arguments can be understood by high school

seniors.  For example, students that have been exposed to trigonometric

identities and the rational roots theorem could definitely analyze the

mathematics that goes into showing these problems impossible.  For students to

fully comprehend what geometers of the past constructed, they need to take a

step back in time.

At first, we would discuss the history of constructions and the tools

allowed during the time of the Greeks.  Initially, students will only be allowed

paper, a compass, and a straightedge.  Although students may get frustrated, it

can be related to the difficulties that the mathematicians of the past might have

had to overcome.  This frustration is usually quickly forgotten once they

transition to constructions using technology.  Then they can see how the

mathematicians of today have an easier task when it comes to analyzing

constructions and their properties.  Throughout the lesson, students will discuss

the details about the constructions and why they are doing what they are doing.

Students will complete the following constructions:

1. Construct a congruent segment.

2. Construct a congruent angle.

3. Construct an angle bisector.

4. Construct a line perpendicular to a given line at a point on the

line.
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5. Construct a line perpendicular to a given line from a given point

not on the line.

6. Construct a perpendicular bisector of a line segment.

7. Construct a line parallel to a given line.

8. Construct an equilateral triangle.

Challenge Problem:  Inscribe a circle in a triangle.

Challenge Problem:  Circumscribe a circle about a triangle.

In relating back to the three impossible problems of antiquity, students

will attempt to construct different angle measures. They will determine which

ones can be constructed easily and why others cannot.  This will just touch on the

concept of constructible numbers, but will not get into the specific detail.  While

constructing these angles, students can also see the lengths that are created by

constructing these angles.  There can be some great discussion that can come

from such constructions.   Students will attempt the following angle

constructions (not all are possible):

1. Construct a 90˚ angle.

2. Construct a 45˚ angle.

3. Construct a 60˚ angle.

4. Construct a 30˚ angle.

5. Construct a 120˚ angle.

6. Construct a 75˚ angle.

7. Construct a 20˚ angle.
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Furthermore, students can mathematically analyze how the operations of

addition, subtraction, multiplication, division, and square rooting can be shown

through constructions.  Therefore, students can show the construction of   x y+

and   x y− .  Moreover, students can use the geometry they already know to show

why the constructions for   xy ,   y x , and   x  work.

The importance of constructions can be argued for many reasons.

According to Cathleen Sanders “construction can reinforce proof and lend visual

clarity to many geometric relationships [18].” Robertson claims that

constructions “give the secondary school student, starved for a Piagetian

concrete-operational experience, something tangible [17].

In Pandisico’s article Alternative Geometric Constructions:  Promoting Mathematical

Reasoning [16], he states that

“…unless constructions simply ask students to mimic a given

example, they promote true problem solving through the use of

reasoning.  Finally, constructions promote a spirit of exploration

and discovery and can be guided to the extent that the teacher

desires.

Overall, most mathematicians do agree that constructions are useful.  However

the weight that is given to compass and straightedge constructions is where there

is a disagreement.  Some educators use constructions as a topic to be covered

only if time permits at the end of the year.  Others think it should be

incorporated throughout the course.  It seems to depend on each individual’s

history in constructions as to which they prefer.
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Most educators in general will agree there are several different types of

student learning styles:  auditory, visual, and manipulative.  Constructions can

be a nice combination of all of these. Due to age, physical or mental impairments,

or just plain sloppiness, some students may have difficulties with the preciseness

of compass and straightedge constructions.  This lack of preciseness can

sometimes be remedied with the use of technology.

Today, in the world of computer technology, there are many resources for

a geometry classroom. The most common is “dynamic geometry” software.  The

word dynamic is used to describe the ability to “click and drag” the

constructions to see that properties will always hold.  Rather than having to

construct the same type of construction again, this software allows for the

construction to be “moved” to notice what will always hold true.  The students

will analyze the constructions and determine what changes and what stays the

same.    Students have the ability to manipulate shapes in order to investigate

patterns, write conjectures, and test these conjectures [3].  On the other hand, the

word used to describe compass and straightedge constructions is static.   Static

means immobile, stationary, unmoving, and fixed.  Static constructions do not

have the strong impact as those of dynamic constructions.

The first dynamic geometry software program was the Geometric Supposer.

After advancements in technology the next program was Cabri Géomètre.  This

program was first incorporated onto the Texas Instruments graphing calculator,

TI-92.  Cabri Junior is now preloaded on the TI-84 Plus and the TI Voyage 200 and

is also available for  download on the TI-92 Plus, TI-89 Plus, and TI-83 Plus

graphing calculators. The more commonly used program today is The Geometer’s
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Sketchpad.  This program is preloaded on the TI Voyage 200 graphing calculator

and is used primarily as computer software.

Kissane [6] describes how this type of software might change the outlook

of geometry just as other technology has changed to focus in other areas of

mathematics.

“After the hand calculator was invented, arithmetic could never be

the same again.  Following the invention of data analysis software,

statistics could never be the same again.  Now that algebra is

available not only on large computer systems, but also on graphics

calculators and personal technologies like the TI-92, algebra and

calculus can never be the same again.  It now seems, too, that

geometry can never be the same again. ”

Not every mathematician is an advocate of this new advancement in

geometry.  Some believe it to be cheating.  Some educators, in the past and even

to this day, view the use of calculators as cheating in certain situations.  But all

educators realize the importance of student higher order thinking that can be

achieved by analyzing problems instead of doing long arithmetic.  In regards to

constructions, the opponents of programs such as The Geometer’s Sketchpad argue

that students no longer realize the importance of proof.  Students will mindlessly

follow a set of directions and not pay attention to the details of what they are

doing and why.  Similarly, this could happen just as some students may

mindlessly find the derivative of an equation and not know what they are in fact

finding.  This does not mean that students should not be taught the short cut of

finding derivatives.  There will be students that are not concerned about the
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why’s of mathematics.  But educators have to encourage an interest in

mathematics as much as possible.

The use of technology in the geometry classroom has only been common

in the past decade.  Who knows how educators will view the use of dynamic

geometry software in the future?  Overall, however, most educators see the true

benefits of using technology in the geometry classroom.  As Brad Glass [3]

answers the question of how technology can be used to help students learn

geometry,

“…computing tools can help students (a) focus on the relevant

aspects of a problem or figure, (b) function at higher levels of

geometric understanding, (c) distinguish between drawings and

constructions, and (d) develop and reason about conjectures on the

basis of generalizations of patterns that unfold during exploration.”

Dynamic software programs help to visualize a relationship but do not provide a

formal proof using appropriate geometry definition, postulates, and theorems.

However, experimentation and analysis used with technology can be a great

transition into formal proof.

There list of activities using dynamic geometry software as endless.

Specifically, Key Curriculum Press has an Exploring Geometry with The Geometer’s

Sketchpad resource [1] that has ten chapters worth of materials.  Teachers do not

have to come up with activities on their own.  The directions and diagrams are

detailed and can be easily followed by students of varying abilities.
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The topics covered are as follows…

1. Lines and Angles

2. Transformations, Symmetry, and Tessellations

3. Triangles

4. Quadrilaterals

5. Polygons

6. Circles

7. Area

8. The Pythagorean Theorem

9. Similarity

10. Trigonometry and Fractals

In addition to student activities, there is a multitude of guided demonstrations.

These demonstrations can work well on an individual student basis and also as a

teacher only demonstration.

Students can also use The Geometer’s Sketchpad as an accurate compass and

straightedge.  For those students that are not accurate with a compass, The

Geometer’s Sketchpad can be an essential tool.  They can understand the concepts

and constructions without having to worry about human drawing inaccuracy.   If

students only use The Geometer’s Sketchpad and do not discuss compass and

straightedge construction, the true geometry behind these computer programs

could be lost.  Therefore, only after students have made some constructions

using a compass and straightedge should students then make similar

constructions using The Geometer’s Sketchpad.  Teachers have to decide how much

of the program the students can use.   Some teachers may only allow the point,

line, and circle tools to be used.  Whereas, other teachers may allow the shortcuts
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that The Geometer’s Sketchpad offers.  As the students construct using The

Geometer’s Sketchpad it is important to discuss how these dynamic constructions

relate to compass and straightedge constructions and the history of

constructions.

Regardless of how much a teacher uses technology or the method of

integrating this technology, students and teachers alike enjoy the benefits of

advancements in technology.  The National Council of Teachers of Mathematics

(NCTM) published Principles and Standards for School Mathematics in 2000 with

specific geometry standards for grades 9-12 .  In agreement with most students

and teachers, this publication emphasized the importance of dynamic geometry

software in the geometry classroom.

When deciding on curriculum, the state and national standards should be

examined.  The NCTM has a standard specific to Geometry.  The broad standard

is broken down into four sub-standards as follows:

1. Analyze characteristic and properties of two- and three-dimensional

geometric shapes and develop mathematical arguments about geometric

relationships.

2. Specify locations and describe spatial relationships using coordinate

geometry and other representational systems.

3. Apply transformations and use symmetry to analyze mathematical

situations.

4. Use visualization, spatial reasoning, and geometric modeling to solve

problems.
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Although all of these standards are important, the ones that most directly deal

with constructions are standards one and four.  Standard four is further broken

down into the following expectations:

• Draw and construct representations of two- and three-dimensional

geometric objects using a variety of tools;

• Visualize three-dimensional objects and spaces from different perspectives

and analyze their cross-sections;

• Use vertex-edge graphs to model and solve problems;

• Use geometric models to gain insights into, and answer question in, other

areas of mathematics;

• Use geometric ideas to solve problems in, and gain insights into, other

disciplines and other areas of interest such as art and architecture.

Furthermore, an expectation of sub-standard one is to “establish the validity of

geometric conjectures using deduction, prove theorems, and critique arguments

made by others.”  These sub-standards and expectations clearly show that higher

order geometric thinking is expected of high school students.

The most obvious expectation related to geometric constructions is that

students should be able to “draw and construct representations of two- and

three-dimensional geometric objects using a variety of tools.”   Clearly students

can not ignore the constructions of the past.  In order to use a variety of tools

students may use a paper and pencil, compass and straightedge, or dynamic

geometry software.  Students should not focus on just one method but many.

Another standard set out by the NCTM is Reasoning and Proof.  Students

should be able to
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• Recognize reasoning and proof as fundamental aspects of mathematics;

• Make and investigate mathematical conjectures;

• Develop and evaluate mathematical arguments and proofs;

• Select and use various types of reasoning methods of proof [9].

Again, students can not ignore formal proofs.  Even though exploring and

making conjectures using The Geometer’s Sketchpad is helpful and interesting, it

does not prove something to be true.  This investigating and conjecturing can be

a solid link to more formal geometry.

Illinois State Standards also have high expectations for high schoolers in

terms of geometric thinking.  Illinois’ State Goal 9 states that student should

“use geometric methods to analyze, categorize and draw conclusions about

points, lines, planes, and space.”  This goal is further broken down as follows:

A. Demonstrate and apply geometric concepts involving points, lines,

planes, and space.

B. Identify, describe, classify and compare relationships using points, lines,

planes, and solids.

C. Construct convincing arguments and proofs to solve problems.

D. Use trigonometric ratios and circular functions to solve problems.

Similar to the NCTM standards, the Illinois standards are also broken down into

specific expectations.  Some of the related expectations are:
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• 9.B.4 – Recognize and apply relationships within and among geometric

figures.

• 9.C.4a – Construct and test logical arguments for geometric situations

using technology where appropriate.

• 9.C.4b – Construct and communicate convincing arguments for geometric

situations.

• 9.C.4c. – Develop and communicate mathematical proofs (e.g., two-

column, paragraph, indirect) and counter examples for geometric

statements [5].

Again, these standards clearly correlate with constructions both with and

without the use of technology.  Students must know how to think

“geometrically.”  Constructions and proof are still a part of the state and national

standards.  Overall, geometry is a core part of mathematics.  Students have had

to know and will continue to have to know about constructions and proofs.

How students continue to learn about constructions and proof is

changing.  Some say for the better; some say for the worse.  But with the

advancement of technology and resources, students have more opportunities to

see constructions and proofs in a variety of ways.   However, just because the

world is moving ahead does not mean that the history should be forgotten.

The methods of today are just as important as the history of the past.  With the

knowledge of both the old and new methods, students can compare and contrast

to determine which method better suites a particular problem.  Just as the Oracle

of Delos believed of the Athenians, teachers should believe of their students:
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students need to recognize the importance of mathematics and geometry in

general.
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Constructions

1. Construct a congruent segment.

Given:    AB

Construct:   XY such that   AB XY=

1) Construct a line with X on the line.

2) Construct a circle with a center at X and a

radius of   AB . Let Y be the point of intersection

of circle and the line.

3) Then   AB XY= .

2. Construct a congruent angle.

Given:    ∠ABC

Construct:   ∠XYZsuch that   mABC m XYZ= ∠

1) Construct a line with Y on the line.

2) Construct a circle with a center at Y and a

radius of   AB .  Let Z be the point of

intersection of circle and the line.

3) Construct a circle with center at A and radius

  AB .  Let D be the point of intersection of ray

BC and this circle.  Construct   AD .

4) Construct a circle with a center at Z and a radius of   AD .  Let X be the

point of intersection of the two circles.

5) Construct   YX .

6) Then   mABC m XYZ= ∠ .

Y

A B

X

X

Z

DB

A

C

Y

B

A

C



3. Construct an angle bisector.

Given:    ∠ABC

Construct: the angle bisector of   ∠ABC

1) Construct a circle with a center at B and a radius of   AB .  Let D be the

point of intersection of the circle and   BC .

2) Construct a circle with a center at A and a radius of   AD . Construct a

circle with a center at D and a radius of   AD .  Let E be a point of

intersection of the two circles on the interior of   ∠ABC .

3) Construct   BE

4) Then   BE is the angle bisector of   ∠ABC .

E

DB

A

C

B

A

C



4. Construct a line perpendicular to a given line at a point on the line.

Given:  a point X on   AB

Construct: the a line perpendicular to   AB  through point X

1) Construct a circle with a center at X and a radius of   XC , where C is on

  AB .  Let D be the other point of intersection of the circle and   AB .

2) Construct a circle with a center at C and a radius of   CD . Construct a circle

with a center at D and a radius of   CD .  Let E and F be the points of

intersection of the two circles.

3) Construct   EF

4) Then   EF  is perpendicular to   AB  through point X.

E

F

DC
A BX

A BX



5. Construct a line perpendicular to a given line from a given point not on the

line.

Given:  a point X not on   AB

Construct: the a line perpendicular to   AB  through point X

1) Construct a circle with a center at X and a radius of   XD , where   XD  is

greater than the distance from X to   AB .  Let E and F be the points of

intersection of the circle and   AB .

2) Construct a circle with a center at E and a radius of   EF . Construct a circle

with a center at F and a radius of   EF .  Let H and G be the points of

intersection of the two circles.

3) Construct   HG

4) Then   HG is perpendicular to   AB  through point X.

H

G

FE
A B

X

D

A B

X



6. Construct a perpendicular bisector of a line segment.

Given:   AB

Construct: the perpendicular bisector of  AB

1) Construct a circle with a center at A and a radius of   AB . Construct a circle

with a center at B and a radius of   AB .  Let C and D be the points of

intersection of the two circles.

2) Construct   CD

3) Then   CD  is the perpendicular bisector of  AB .

M

D

C

A B

A B



7. Construct a line parallel to a given line.

Given:   AB  and point C not on line   AB

Construct: a line parallel to   AB  passing through C

1)  Construct   AC .

2) Construct a circle with center at A and a radius of   AB . Let D be the point

of intersection of this circle with   AC .

3) Construct a circle with center at C and a radius of   AB . Let E be the point

of intersection, not between A and C, of this circle with   AC .

4) Construct a circle with center at E and a radius of   DB . Let F be the point

of intersection of this circle and circle C.

5) Construct   CF .

6)   Then 
  
AB CF .

G

F

E

D

A

C

B

A

C

B



8. Construct an equilateral triangle.

Given:   AB

Construct: an equilateral triangle,   ∆ABC

1) Construct a circle with a center at A and a radius of   AB . Construct a circle

with a center at B and a radius of   AB .  Let C and D be the points of

intersection of the two circles.

2) Construct   ∆ABC .

3)   Then   ∆ABC  is an equilateral triangle.

C

D

A B

A B



Challenge Problem:  Inscribe a circle in a triangle.

Given:   ∆ABC

Construct: a circle inscribed in   ∆ABC

1) Construct the angle bisectors of the angles of   ∆ABC .

(Only two of the three are really necessary to construct.)

2) Let O be the point of intersection of the angle bisectors.

3) Construct an altitude from O to any of the three sides.

4) Let X be the point of intersection of the altitude with the side of the

triangle.

5) Construct a circle with center O and radius |OX|.

6) Then this circle is inscribed in the triangle ABC.

When inscribing a circle in a triangle, the angle bisectors will always meet inside

the circle.

A

B

C

O

X

X

O

A

B

C



Challenge Problem:  Circumscribe a circle about a triangle.

Given:   ∆ABC

Construct: a circle circumscribed about   ∆ABC

1)  Construct   AB ,   BC , and   AC .

2) Construct the perpendicular bisectors of each side of the   ∆ABC .

(Only two of the three are really necessary to construct)

3) Let O be the point of intersection of the three perpendicular bisectors.

Then point O is equidistant from points A, B, and C.

4) Construct a circle with center O and a radius of |OA|.

5) Then this circle is circumscribed about the triangle ABC.

When circumscribing a circle, the perpendicular bisectors intersect in different

places depending on the type of triangle.

• In an acute triangle, the perpendicular bisectors intersect inside the triangle.

A

B

C

O

m ABC = 7 1 °

A

B

C
O

m ABC = 66°



• In a right triangle, the perpendicular bisectors intersect on the triangle,

specifically on the midpoint of the hypotenuse.  The hypotenuse of the

triangle is also the diameter of the circumscribed circle.

In an obtuse triangle, the perpendicular bisectors intersect outside the triangle.

A

B

CO

m ABC = 9 0 °

A

B

CO

m ABC = 9 0 °



1. Construct a 90˚ angle.

A

B

C

O

m ABC = 107°

A

B

C
O

m ABC = 105°



1) Construct   AB .

2) Construct a perpendicular bisector.

2. Construct a 45˚ angle.

1) Construct   AB .

2) Construct a perpendicular bisector.

3) Construct the angle bisector.

3. Construct a 60˚ angle.

1) Construct an equilateral triangle.

4. Construct a 30˚ angle.

1) Construct an equilateral triangle.

2) Construct the angle bisector.

5. Construct a 120˚ angle.

1) Construct a 60˚ angle.

2) Then construct 60˚ plus 60˚.

6. Construct a 75˚ angle.

1) Construct a 30˚ angle.

2) Construct a 45˚ angle.

3) Then construct a 30˚ plus 45˚.

7. Construct a 20˚ angle.  NOT POSSIBLE!




