## Chaprer 10. Unifíprssu Circular Motion

A PowerPoint Presentation by
Paul E. Tippens, Professor of Physics
Southern Polytechnic State University
© 2007


## Objectives: Ajiter connpleting this module, you should be alble to:

- Apply your knowledge of centripetal acceleration and centripetal force to the solution of problems in circular motion.
- Define and apply concepts of frequency and period, and relate them to linear speed.
- Solve problems involving banking angles, the conical pendulum, and the vertical circle.


## Unifgrm Circular Motion

Uniforms circular motion is motion along a circular path in which there is no change in speed, only a change in direction.


O Constant velocity tangent to path.

O Constant force toward center.

Question: Is there an outward force on the ball?

## Uniforrn Circular Motion (Cont.)

The question of an outward force can be resolved by asking what happens when the string breaks!


Ball moves tangent to path, NOT outward as might be expected.

When central force is removed, ball continues in straight line.

Centripetal force is needed to change direction.

# Examples of Centiripetal Force 

You are sitting on the seat next to the outside door. What is the direction of the resultant force on you as you turn? Is it away from center or toward center of the turn?

- Car going around a curve.


Force ON you is toward the center.

## Car Example Conitinued

## 

The centripetal force is exerted BY the door ON you. (Centrally)

There is an outward force, but it does not act ON you. It is the reaction force exerted BY you ON the door. It affects only the door.

## Another Example

- Disappearing platform at fair.


What exerts the centripetal force in this example and on what does it act?

The centripetal force is exerted BY the wall ON the man. A reaction force is exerted by the man on the wall, but that does not determine the motion of the man.

## Spin gycle on a Washer

How is the water removed firom clothes during the spin cycle of a washer?


Think carefully befiore answering . . . Does the centripetal force throw water offif the clothes?

NO. Actually, it is the LACK of a force that allows the water to leave the clothes through holes in the circular wall of the rotating washer.

## Centripetal Acceleration

Consicler ball moving at constant speed vin a horizontal circle of radius $R$ at end of string tied to peg on center of table. (Assume zero friction.)


Force $F_{c}$ and acceleration a toward center.

$$
W V=n
$$

## Deriving Centiral Acceleration

Consider initial velocity at A and final velocity at B:


Deriving Acceleration (Cont.)

Definition: $\quad a_{c}=\frac{}{t}$
$\underset{\text { Simiangles }}{\operatorname{Sim}} \frac{\Delta v}{v}=\frac{s}{R}$

$$
a_{c}=\frac{\Delta v}{t}=\frac{v s}{R t}=\frac{V}{R}
$$

Centripetal acceleration:

$$
a_{c}=\frac{v^{2}}{R} ; \quad F_{c}=m a_{c}=\frac{m v^{2}}{R}
$$

Erample 1: A 3-kg rock swings in a circle of raclius 5 m . If its constant speed is 8 ssy/s, what is the centripetal acceleration?


Exarniple 2: A skater moves with $15 \mathrm{~m} / \mathrm{s}$ in a circle of raclius 30 m . The ice exerts a central force of 450 N . What is the mass of the skater?
Dravy and lábel skettch


$$
\begin{gathered}
F_{c}=\frac{m v^{2}}{R} ; m=\frac{F_{c} R}{v^{2}} \\
m=\frac{(450 \mathrm{~N})(30 \mathrm{~m})}{(15 \mathrm{~m} / \mathrm{s})^{2}} \\
m=60.0 \mathrm{~kg}
\end{gathered}
$$

Speed skater

Example 3. The wall exerts a 600 N force on an 80 -kg person moving at $4 \mathrm{~m} / \mathrm{s}$ on a circuilar plaiform. What is the radius of the circular path?

## Dreiw and labee/ sketch

$$
\begin{gathered}
\begin{array}{c}
m=80 \mathrm{~kg} ; \\
v=4 \mathrm{~m} / \mathrm{s}^{2}
\end{array} \\
r=\frac{(80 \mathrm{~kg})(4 \mathrm{~m} / \mathrm{s})^{2}}{600 \mathrm{~N}}
\end{gathered}
$$

Newton's 2nd law for circular motion:

$$
F=\frac{m v^{2}}{r} ; \quad r=\frac{m v^{2}}{F}
$$

$$
r=2.13 \mathrm{~m}
$$

## Car Negotiating a Flat Turn



## Car Negotiating a Flat Turn

## Car Negotiating a Flat Jurn



The centripetal force $F_{c}$ is that of static friction $f_{S^{\prime}}$


The central force $F_{C}$ and the friction force $f_{s}$ are not two different forces that are equal. There is just one force on the car. The nature of this central force is static friction.

## Finding the maximum speed for negotiating a turn without slipping.



The car is on the verge of slipping whien $F_{c}$ is equal to the maximumn force of static friction $f_{5}$

$$
F_{c}=f_{s} \quad F_{c}=\frac{m v^{2}}{} \quad f_{s}=\mu_{s} m g
$$

$R$

Maximum speed without slipping (Cont.)


$$
\begin{gathered}
F_{c}=f_{s} \\
\frac{h v^{2}}{R}=\mu_{s} m g \\
v=\sqrt{\mu_{s} g R}
\end{gathered}
$$

Velocity v is maximum speed for no slipping.

Example 4: A car negotiates a turn of radius 70 sn when the coefficient of static firiction is 0.7. What is the maximum speed to avoid slipping?


$$
v=\sqrt{\mu_{s} g R}=\sqrt{(0.7)(9.8)(70 \mathrm{~m})}
$$

$$
v=21.9 \mathrm{~m} / \mathrm{s}
$$

## Optinnurn Banking Angle



By banking a curve at the optimum angle, the normal force $\cap$ can provide the necessary centripetal force without the need for a friction force.

slow speeed
fast speeed

## Free-body Díagram



## Optimurn Banking Angle (Conit.)


$\rho \cos \theta$
$n$
$n \sin \theta$

Appoly
Newton's 2nd Law to $x$ and
yaxes.

$$
\begin{array}{ll}
\Sigma F_{x}=m a_{c} & \cap \sin \theta=\frac{m L^{2}}{R} \\
\Sigma F_{y}=0 & \rho \cos \theta=m g
\end{array}
$$

## Optimumra Banking Angle (Conit.)

## $n \cos \theta$

## $1 n$


$\tan \theta=\frac{n \sin \theta}{n \cos \theta}$

$$
\left.\begin{array}{l}
n \sin \theta=\frac{m v^{2}}{R} \\
n \cos \theta=m g
\end{array}\right] \quad \tan \theta=\frac{\frac{m v^{2}}{m g}}{\frac{m}{1}}=\frac{v^{2}}{g R}
$$

## Optimumra Banking Angle (Conit.)


$n \cos \theta$


Optimum Banking Angle $\theta$
$\tan \theta=\frac{v^{2}}{g R}$

Example 5: A car negotiates a turn of raclius 80 m . What is the optimum banking angle for this curve if the speed is to be equal to $12 \mathrm{~m} / \mathrm{s}$ ?

$n \cos \theta$
$\tan \theta=0.184$
$\theta=10.40$


A conical pendulum consists of a mass $m$ revolving in a horizontal circle of radius $R$ at the end of a cord of length $L$.


Note: The inward component of tension $T \sin \theta$ gives the needed central force.

## Angle $\theta$ and velocity v :



Solve two equations to find angle $\theta$

$$
\begin{aligned}
& T \sin \theta=\frac{m v^{2}}{R} \\
& T \cos \theta=m g
\end{aligned}
$$

$$
\tan \theta=\frac{v^{2}}{g R}
$$

Erample 6: A 2-kg mass swings in a horizonital circle at the end of a cord of length 10 m . What is the constant speed of the mass if the rope makes an angle of $30^{\circ}$ with the vertical?


# 1. Drawl \& labeel sketch'. <br> 2. Recall formula for pendulum 



Flinot: $y=?$
3. To use this formula, we need to filind $R=$ ?

$$
R=\mathrm{L} \sin 30^{\circ}=(10 \mathrm{~m})(0.5) \quad R=5 \mathrm{~m}
$$

## Example $6\left(\right.$ Conitis): Find $v$ for $\theta=30^{\circ}$

## 4.! リヒe given info to filnd the

 velocity at $30^{\circ}$.$r=5 \mathrm{~m} \quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Solve for $\tan \theta=\frac{v^{2}}{g R}$
$\theta=30^{\circ}$ $R=5 \mathrm{~m}$ $\mathrm{v}=$ ?

$v^{2}=g R \tan \theta \quad v=\sqrt{g R \tan \theta}$
$v=\sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~m}) \tan 30^{0}}$
$v=5.32 \mathrm{~m} / \mathrm{s}$

Example 7: Now find the tension T in the cord if $\mathrm{s},=2 \mathrm{~kg}, \theta=30^{\circ}$, and $\mathrm{L}=10 \mathrm{~m}$.

$\Sigma F_{y}=0 ; \quad T \cos \theta-m g=0 ; \quad T \cos \theta=m g$
$T=\frac{m g}{\cos \theta}=\frac{(2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\cos 30^{\circ}} \quad T=22.6 \mathrm{~N}$

Example 8: Find the centripetal force $F_{c}$ for the previous example.

$m=2 \mathrm{~kg} ; v=5.32 \mathrm{~m} / \mathrm{s} ; \mathrm{R}=5 \mathrm{~m} ; \mathrm{T}=22.6 \mathrm{~N}$

$$
F_{c}=\frac{m v^{2}}{D} \text { or } F_{c}=T \sin 30^{\circ} \quad F_{c}=11.3 \mathrm{~N}
$$

## Swinging Seats at the Fair

This problem is identical to the other examples except for finding $R$.

$$
\begin{gathered}
R=a+b \\
R=L \sin \theta+b
\end{gathered}
$$

$$
\tan \theta=\frac{V^{2}}{g R}
$$

and

$$
v=\sqrt{g R \tan \theta}
$$

Example 9. If $b=5 \mathrm{~m}$ and $L=10 \mathrm{~m}$, what will be the speed if the angle $\theta=26^{\circ}$ ?

$$
\tan \theta=\frac{v^{2}}{g R} \quad R=d+b
$$

$d=(10 \mathrm{~m}) \sin 26^{\circ}=4.38 \mathrm{~m}$
$R=4.38 \mathrm{~m}+5 \mathrm{~m}=9.38 \mathrm{~m}$

$v^{2}=g R \tan \theta \quad v=\sqrt{g R \tan \theta}$
$v=\sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(9.38 \mathrm{~m}) \tan 26^{0}}$
$v=6.70 \mathrm{~m} / \mathrm{s}$
Motion in a Vertical Circle


Consider the forces on a ball attached to a string as it moves in a vertical loop.

Note also that the positive direction is allways allong acceleration, i.e, toward the center of the circle

Note changes as you click the mouse to show new positions.


As an exercise, assume that a central force of $F_{c}=40 \mathrm{~N}$ is requifed to maintain circular motion of a ball and $W=10 \mathrm{~N}$

The tension $T$ must adjust so that central resultant is 40 N .

At top: $10 \mathrm{~N}+\mathrm{T}=40 \mathrm{~N}$

$$
\pi=30 \mathrm{~N}
$$

Bottom: T-10 N = 40 N
$\pi /=50 \mathrm{~N}$

## Motion in a Vertical Circle


$\begin{aligned} & \text { Resultant force } \\ & \text { toward center }\end{aligned} F_{c}=\frac{m v^{2}}{R}$


Consider TOP of circle:

$$
m g+T=\frac{m v^{2}}{R}
$$

$$
m \overbrace{T}+
$$

Vertical Circle; Mass ait bottoms

$\begin{aligned} & \text { Resultant force } \\ & \text { toward center }\end{aligned} \quad F_{c}=\frac{m v^{2}}{R}$


Consider bottom of circle:

$$
T-m g=\frac{m v^{2}}{R}
$$

$$
T=\frac{m v^{2}}{n}+m g
$$

$R$

Visual Aicl: Assume that the centripetal force required to maintain circular motion is 20 N . Further assume that the weight is 5 N .


$$
F_{C}=\frac{m v^{2}}{R}=20 \mathrm{~N}
$$

Resultant central force $F_{C}$ at every point in path!

$$
F_{C}=20 \mathrm{~N}
$$

Weight vector WV is
downward at eveny point.
$W=5 \mathrm{~N}$, down

Visual Aicl: The resultant force ( 20 N ) is the vector sum of $T$ and W/at ANY point in path.


$$
\begin{aligned}
& \text { Tор: } \quad T+W=F_{C} \\
& T+5 \mathrm{~N}=20 \mathrm{~N} \\
& T=20 N-5 N=15 N \\
& \text { Bottom: } \\
& T-W=F_{C} \\
& T-5 N=20 \\
& T=20 \mathrm{~N}+5 \mathrm{~N}=25 \mathrm{~N}
\end{aligned}
$$

## For Mlotion in Circle



AT BOTTOM:
$m g \uparrow \uparrow+$

$$
T=\frac{m v^{2}}{R}+m g
$$

Example 10: A 2-kg rock swings in a vertical circle of radius 8 m . The speed of the rock as it passes its highest point is $10 \mathrm{~m} / \mathrm{s}$. What is tension $T$ in rope?


At Top:
$m g+T=\frac{m r^{2}}{R}$
$R$

$$
T=\frac{m v^{2}}{R}-m g
$$

$T=\frac{(2 \mathrm{~kg})(10 \mathrm{~m} / \mathrm{s})^{2}}{8 \mathrm{~m}}+2 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
T=25 N-19.6 N
$$

## $T=5.40 \mathrm{~N}$

Example 11: A 2-kg rock swings in a vertical circle of radius 8 m . The speed of the rock as it passes its lowest point is $10 \mathrm{~m} / \mathrm{s}$. What is tension $T$ in rope?


Example 12: What is the critical speed $v_{c}$ at the top, jij the 2-kg mass is to continue in a circle of radius 8 m ?
At Top: $\quad m g+f=\frac{m v^{2}}{R}$
$v=\sqrt{g R}=\sqrt{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(8 \mathrm{~m})} \quad v_{c}=8.85 \mathrm{~m} / \mathrm{s}$

The Loop-the-Loop Sarne as cord, $\cap$ replaces T

AT TOP:

AT BOTTOM:
$m g \uparrow \uparrow+$

$$
n=\frac{m v^{2}}{R}+m g
$$

The Ferris Wheel

$\frac{m v^{2}}{R}$
AT TOP:
$n \uparrow+$
$m g$


AT ВОТТОМ:
$m g \uparrow \uparrow+$

$$
n=\frac{m v^{2}}{R}+m g
$$

Exarnple 13: What is the apparent weight of a 60-kg person as she moves through the highest point when $R=45 \mathrm{~m}$ and the speed at that point is $6 \mathrm{~m} / \mathrm{s}$ ?

A,p,parentit weightit will be the normal force at the top:


$$
m g-n=\frac{m v^{2}}{R}
$$

$$
n=m g-\frac{m v^{2}}{R}
$$

$n=60 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-\frac{(60 \mathrm{~kg})(6 \mathrm{~m} / \mathrm{s})^{2}}{45 \mathrm{~m}}$

## $n=540 \mathrm{~N}$

## Sumpnary

## Centripetal acceleration:

$$
a_{c}=\frac{v^{2}}{R} ; \quad F_{c}=m a_{c}=\frac{m v^{2}}{R}
$$

Conical pendulum:

$$
\tan \theta=\frac{v^{2}}{g R}
$$

## Surninary: Motion in Circle

## AT TOP: <br> $$
m g+T=\frac{m v^{2}}{R}-m g
$$

АТ ВОТТОМ:
$m g \uparrow \uparrow+$

$$
T=\frac{m v^{2}}{R}+m g
$$

Summary: Ferris Wheel AT TOP: $m o-n=\frac{m v^{2}}{R}$ AT TOP: $m g-n=\frac{m}{R}$ $m g$


AT BOTTOM:
$\begin{gathered}n \\ m\end{gathered} \uparrow+$

$$
n=\frac{m v^{2}}{R}+m g
$$

## CONCLUSION: Chapter 10

 Uniforss Circular Mlotion