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BINOMIAL THEOREM 
 

1. Introduction 

 

  When we expand 2( 1)x +  and 3( 1)x + , we get 
2

2

2

( 1) ( 1)( 1)
1

2 1

x x x
x x x
x x

+ = + +

= + + +

= + +

 

and 
3 2

2

3 2 2

3 2

( 1) ( 1)( 1)
( 1)( 2 1)

2 2 1
3 3 1

x x x
x x x

x x x x x
x x x

+ = + +

= + + +

= + + + + +

= + + +

 

respectively. However, when we try to expand 4( 1)x +  and 5( 1)x + , we find that this method 
becomes very tedious. Furthermore, how about ( 1)nx + , when n is an arbitrary positive integer? 

The binomial theorem helps us to expand these and other expressions more easily and conveniently. 

 

Here we shall go over the basics of the binomial theorem, as well as a number of techniques in 
which the binomial theorem helps us to solve a wide range of problems. 

 

 

2. The Binomial Coefficients 

  

Definition 2.1. (Binomial coefficient) 

The binomial coefficients are the coefficients in the expansion of ( 1)nx + . The coefficient of rx  

in ( 1)nx +  is denoted as n
rC , n rC  or 

n
r

 
 
 

. 

(Here we shall be using the first notation throughout.) 

 

 The Pascal triangle lists out all the binomial coefficients, as shown in Figure 1. 
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0th row 1
1st row 1 1
2nd row 1 2 1
3rd row 1 3 3 1
4th row 1 4 6 4 1
5th row 1 5 10 10 5 1
6th row 1 6 15 20 15 6 1
7th row 1 7 21 35 35 21 7 1

 

Figure 1: The Pascal triangle 

 

 The 0th row is the coefficient in the expansion of 0( 1)x + , or simply 1. From the first row 
onwards, the nth row contains the 1n +  coefficients in the expansion of ( 1)nx + . As you can 

probably observe, there are some intriguing properties in the Pascal triangle: 

 

 The triangle is symmetric about the middle of each row, i.e. n n
r n rC C −= . 

 

 Except for the leftmost and rightmost numbers in each row, every number is the sum of the 
two numbers directly above it, i.e. 1 1

1
n n n
r r rC C C− −

−= + . 

 

 In every row, the numbers first increase from 1 to a maximum value, then decrease back to 1. 

 

 The second number (as well as the second last number) in the nth row is n, i.e. 1 1
n n

nC C n−= = . 

 

Example 2.1. 

Using the Pascal triangle, expand 5( 1)x +  and 7( 1)x + . 

 

Solution. 

From the Pascal triangle, the terms in the 5th row are 1, 5, 10, 10, 10, 5 and 1. 

Thus we have 5 5 4 3 2( 1) 5 10 10 5 1x x x x x x+ = + + + + + . 

Similarly, by referring to the 7th row of the Pascal triangle, we have 
7 7 6 5 4 3 2( 1) 7 21 35 35 21 7 1x x x x x x x x+ = + + + + + + + . 
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3. The Binomial Theorem 

 

We are going to find an explicit formula for computing the numbers in the Pascal triangle, so 
that we can carry out expansions conveniently without always referring to the triangle as well as 
explain the interesting properties we observed. 

 

 According to definition, 

 1 2 2
1 2 2 1 0( 1)n n n n n n n n n n

n n nx C x C x C x C x C x C− −
− −+ = + + + + + +  (1) 

Putting 0x = , we get 0 1nC = , as we can see from the Pascal triangle. The other terms can also be 

computed by successive differentiation of the above formula, as we illustrate below. 

 

 Differentiating (1) once, we have 
1 1 2 3

1 2 2 1( 1) ( 1) ( 2) 2n n n n n n n n n
n n nn x nC x n C x n C x C x C− − − −

− −+ = + − + − + + + . 

Putting 0x =  again, we have 1
nC n= . 

 

 Similarly, by differentiating (1) r times, we have 

( )( ) ( )( )
( )( ) ( ) ( ) 1

1 2 1 1

1 2 1 1 3 2 3 2 1

n r

n n r n n
n r r

n n n n r x

n n n n r C x r r C x r C

−

−
+

− − − + +

= − − − + + + + ⋅ ⋅ + ⋅ ⋅ ⋅
 

Putting 0x = , we get ( )( ) ( )1 2 1
3 2 1

n
r

n n n n r
C

r
− − − +

=
⋅ ⋅ ⋅

. 

 

To make the formula simpler, we introduce the factorial symbol. 

 

Definition 3.1. (Factorial) 

For positive integer n, we define the factorial of n, denoted as n!, by 

! ( 1) ( 2) 3 2 1n n n n= × − × − × × × × . 

We also define 0! 1= . 

 

With this notation in hand, we can give the formula for the binomial coefficients in a nice form: 
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Theorem 3.1. 

The binomial coefficient n
rC  is given by !

! ( )!
n
r

nC
r n r

=
−

. 

 

 In combinatorics, n
rC  denotes the number of ways of choosing r objects from n objects.  The 

coefficient of rx  in ( 1)nx +  is n
rC  and this has its combinatorial meaning. The term rx  

comes by choosing r ‘x’s from n terms of ( 1)x + . Thus there are n
rC  terms and hence its 

coefficient is n
rC . 

 

Although we have till now only discussed the expansion of ( 1)nx + , but for the general 
expression ( )na b+  it just takes a few more steps. 

 

Theorem 3.2. (Binomial Theorem) 
1 2 2 1

1 2 1 0
1 2 2 1 1

1 2 1 0

( )

( ) ( 1) ( 1)

n n n n n n n n n n n
n n n

n n n n n n n n n n n n n
n n n

a b C a C a b C a b C ab C b
a b C a C a b C a b C ab C b

− − −
− −

− − − −
− −

+ = + + + + +

− = − + − + − + −
 

 

Proof: We have 

( ) 1
n

n n aa b b
b

 + = + 
 

 

and so 
1 2 2

1 2 2 1 01
n n n n

n n n n n n
n n n

a a a a a aC C C C C C
b b b b b b

− −

− −
           + = + + + + + +           
           

. 

Consequently, 

1 2 2

1 2 2 1 0

1 1 2 2 2 2 1
1 2 2 1 0

1 2 2 2
1 2 2

( )n

n n n
n n n n n n n

n n n

n n n n n n n n n n n n n
n n n

n n n n n n n n
n n n

a b

a a a a ab C C C C C C
b b b b b

b C a b C a b C a b C a b C ab C

C a C a b C a b C a b

− −

− −

− − − − − − −
− −

− − −
− −

+

          = + + + + + +          
           

 = + + + + + + 
= + + + + 2 1

1 0
n n n nC ab C b−+ +

 

as desired. For the expansion of ( )na b− , we simply apply the above result with b replaced by –b. 

Q.E.D. 
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Example 3.1. 

Expand 10( 2)x −  in ascending powers of x, up to the term containing 3x . 

 

Solution. 
10 10

10 10 10 9 10 8 2 10 7 3
0 1 2 3

2 3

2 3

( 2) ( 2 )
( 2) ( 2) ( 2) ( 2)

10 9 10 9 81 1024 10 ( 512) 258 ( 128)
2 1 3 2 1

1024 5120 11610 15360

x x
C C x C x C x

x x x

x x x

− = − +

= − + − + − + − +
⋅ ⋅ ⋅

= ⋅ + ⋅ − + ⋅ + − +
⋅ ⋅ ⋅

= − + − +

 

 

Example 3.2. 

Find the coefficient of 3x  in 2 5(1 2 )(1 2 )x x x+ + − . 

 

Solution. 

Since 
5 2 3

2 3

(1 2 ) 1 5(2 ) 10(4 ) 10(8 )
1 10 40 80

x x x x
x x x

− = − + − +

= − + − +
 

the 3x  term in 2 5(1 2 )(1 2 )x x x+ + −  is given by the sum of 31( 80 )x− , 2(40 )x x  and 22 ( 10 )x x− . 

So the coefficient of 3x  is 80 40 20 60− + − = − . 

 

Example 3.3. 

Find the constant term in the expansion of 2 62( )xx − . 

 

Solution. 

In the expansion of 2 62( )xx − , in descending powers of x, the ( 1)r + st term is 

6 2 6 6 12 2

6 12 3

2( ) ( 2)

( 2)

r
r r r r

r r

r r
r

C x C x x
x

C x

− − −

−

 − = ⋅ − 
 

= −

 

For the constant term, the power of x is 0. Thus we have 12 – 3r = 0 and thus r = 4. 

Then the constant term is 6 4
4 ( 2) 15 16 240C − = ⋅ = . 
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Example 3.4. 

Prove that 1
1 2

1
n n
a a

n aC C
a

+
+

−
≥

+
. 

 

Solution. 

The inequality is equivalent to 

( 1)! !2
( 1)!( )! ! ( )! 1

n n n a
a n a a n a a

+ −
≥

+ − − +
. 

After simplification, this becomes 

1 ( )( 1)
2

n n a a+
≥ − + . 

Using the AM-GM inequality, we have 

1 ( ) ( 1) ( )( 1)
2 2

n n a a n a a+ − + +
= ≥ − +  

and the original inequality is proved. 

 

Example 3.5. 

Find the maximum coefficient in the expansion of 10(3 5)x +  without actual expansion. 

 

Solution. 

Note that the r-th term in the expansion is 10 10(3 ) (5)r r
rC x − . 

We consider the ratio of the ( 1)r + st term to the r-th term, i.e. 
10 1 9

1
10 10

3 5 3 10
3 5 5 1

r r
r

r r
r

C r
C r

+ −
+

−

⋅ −
= ⋅

⋅ +
. 

To see which coefficient is maximum, we only need to know when the ratio is greater than 1 and 
when it is smaller than 1. So we set 

3 10 1
5 1

25 13
8 8

r
r

r

−
⋅ >

+

> =
 

Therefore, the coefficients increase at first and reach a maximum when 4r = . 

So, the maximum coefficient is 10 4 6
4 3 5C ⋅  = 265781250. 
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4. Applications of the Binomial Theorem 

 

The obvious ‘application’ of the binomial theorem is to help us to expand algebraic 
expressions easily and conveniently. Other than that, the binomial theorem also helps us with 
simple numerical estimations. We illustrate this with a couple of examples. 

 

Example 4.1. 

A man put $1000 into a bank at an interest rate of 12% per annum, compounded monthly. How 
much interest can he get in 5 months, correct to the nearest dollar? 

 

Solution. 

Of course with a calculator in hand this will be of no difficulty. But without it we can still estimate 
the answer using the binomial theorem. 

After 6 months, the amount will be 51000 (1.01)× . Using the binomial theorem, 
5 5

2 3 4 5

(1.01) (1 0.01)
1 5(0.01) 10(0.01) 10(0.01) 5(0.01) (0.01)

= +

= + + + + +
 

Since we only require the answer to be accurate to the nearest dollar, we take only the first three 
terms and ignore the rest. 

We have 5(1.01) 1 0.05 0.001 1.051≈ + + = . 

Thus the amount is approximately $1051 and the interest is approximately $51. 

 

Example 4.2. 

Estimate the value of 6(1.0309)  correct to 3 decimal places. 

 

Solution. 

Again with a calculator this will just take a few seconds. 

But without it let us try to expand 2 6(1 )x x+ + . 

We have [ ]62 6

2 2 3 3

2 3

(1 ) 1 (1 )

1 6 (1 ) 15 (1 ) 20 (1 )
1 6 21 50

x x x x

x x x x x x
x x x

+ + = + +

= + + + + + + +

= + + + +

 

Putting 0.03x = , we get 6(1.0309) 1.200≈ . 
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5. Techniques for Dealing with Binomial Coefficients 

 

Although we defined the binomial coefficients as coefficients in the binomial expansion of 
( 1)nx + , we have remarked that these coefficients have a very nice combinatorial interpretation and 

the coefficients themselves have many nice properties. In this section we shall demonstrate various 
techniques in working with binomial coefficients. 

 

In Section 3, we worked out an explicit formula for the binomial coefficients by differentiation 
and substitution of the variable by certain numbers. It turns out that these are important techniques 
that can help us to derive other properties concerning the binomial coefficients as well. 

 

Recall that, according to our definition, 

 2
0 1 2( 1)n n n n n n

nx C C x C x C x+ = + + + + . (2) 

By putting 1x = , we get 

0 1 22n n n n n
nC C C C= + + + + . 

Similarly, by putting 1x = − , we get 

( )0 1 20 1 nn n n n
nC C C C= − + − + − . 

Adding and subtracting these two equalities respectively and dividing by 2, we get 
1

0 2 4 1 3 5 2n n n n n n nC C C C C C −+ + + = + + + = . 

 

Now integrating (2) (we use definite integral here so that we can get rid of the constant of 
integration), we have 

( )2
0 1 20 0

1
2 3 10 1 2

(1 )

(1 ) 1
1 1 2 3 1

x xn n n n n n
n

n nn nn
nn

x dx C C x C x C x dx

C CC Cx x x x x
n n

+
+

+ = + + + +

+ −
= + + + +

+ +

∫ ∫
 

Putting 1x = , we have 
1

0 1 22 1
1 1 2 3 1

n nn n n
nC CC C

n n

+ −
= + + + +

+ +
. 

 

Integrating once more, we have 

( )
( )( ) ( )( )

2
2 3 4 20 1 21 1

1 2 1 1 2 2 3 3 4 1 2

n n nn n
nnx C Cx C Cx x x x

n n n n n

+
++ −

− = + + + +
+ + + ⋅ ⋅ ⋅ + +

. 
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Putting 1x =  again, we see that 

( ) ( )( )
0 1 21 1

2 1 2 2 3 3 4 1 2

n nn n
n nC CC C

n n n
= − + − + −

+ ⋅ ⋅ ⋅ + +
. 

 

Now consider the identity (1 ) (1 ) (1 )m n m nx x x ++ + ≡ + . We shall compare the coefficient of rx  

(assuming 0 m n r≤ ≤ ≤ ) on both sides. On the left hand side, we have 

( )( )2 2
0 1 2 0 1 2(1 ) (1 )m n m m m n n nx x C C x C x C C x C x+ + = + + + + + +  

so that the coefficient of rx  is 

0 1 1 2 2 0
m n m n m n m n

r r r rC C C C C C C C− −+ + + + . 

On the right hand side, the coefficient of rx  is simply m n
rC + . So we have the equality 

 0 1 1 2 2 0
m n m n m n m n m n

r r r r rC C C C C C C C C +
− −+ + + + = . (3) 

 

Note that the identity 1
1

m m m
r r rC C C +
− + =  (which we stated in Section 2 without proof) can be 

obtained using the above method by setting 1n = . It can also be proved by applying the formula 
for binomial coefficients directly, and we leave it as an exercise. 

 

Now setting r m n= =  in (3), we have 
2

0 1 1 2 2 0
n n n n n n n n n

n n n n nC C C C C C C C C− −+ + + + = . 

Since n n
r n rC C −= , this can also be expressed as 

( ) ( ) ( ) ( )2 2 2 2 2
0 1 2
n n n n n

n nC C C C C+ + + + = . 

 

So far we have seen some identities involving the binomial coefficients. We include below a 
few more examples which establish further properties using these identities. 

 

Example 5.1. 

Let n and r be integers with 0 r n≤ ≤ . Find 
1

n
n
r

r
rC

=
∑ . Hence find 2

1

n
n
r

r
r C

=
∑ . 

 

Solution. 

We have 
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( )
( )

( ) ( )
( )

( ) ( )( )

1 1

1

1

1
1

1
1

!
! !

1 !
1 ! !

1 !
1 ! 1 1 !

2

n n
n
r

r r

n

r

n

r

n
n
r

r
n

nrC r
r n r

n
n

r n r

n
n

r n r

nC

n

= =

=

=

−
−

=

−

 
=   − 

 −
=   − − 

 −
=   − − − − 

=

=

∑ ∑

∑

∑

∑

 

On the other hand, 

( )

( )

( )( )
( )

2 1
1

1 1

1
1

1

1 1
1 1

1 1

1 1
1 1

1 0

2 1

2 2

1

1 2 2

2 2

n n
n n
r r

r r
n

n
r

r

n n
n n
r r

r r

n n
n n
r r

r r

n n

n

r C r nC

n rC

n r C C

n rC C

n n

n n

−
−

= =

−
−

=

− −
− −

= =

− −
− −

= =

− −

−

=

=

 = − + 
 
 = + 
 

= − +

= − +

∑ ∑

∑

∑ ∑

∑ ∑
 

 

Example 5.2. 

Let a, b, r be integers such that 0 r a b≤ ≤ ≤ . Using the identity 0 1 1 0
a b a b a b a b
r r r rC C C C C C C+

−= + + + , 

prove that ( )22 2a b a b
a b rC C C +≥ . 

 

Solution. 

By the Cauchy-Schwarz inequality, we have 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

0 1 1 0

2 2 2 2 2 2

0 1 1 0

2 2 2 2 2 2

0 1 0 1

2 2

a b a b a b a b
r r r r

a a a b b b
r r r

a a a b b b
a b

a b
a b

C C C C C C C

C C C C C C

C C C C C C

C C

+
−

−

= + + +

   ≤ + + + + + +      
   ≤ + + + + + +      

=
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Example 5.3. 

Let n and r be integers with 0 r n≤ ≤ . Prove that 1 2
1

n n n r
r r r rC C C C− −
+ = + + + . 

 

Solution. 

Using the identity 1 1
1 1

n n n
r r rC C C− −
+ += +  repeatedly, we have 

1 1
1 1

1 2 2
1

1 2 3 3
1

1 2 3 1 1
1

1 2 3 1

n n n
r r r

n n n
r r r
n n n n
r r r r

n n n r r
r r r r r
n n n r r
r r r r r

C C C
C C C
C C C C

C C C C C
C C C C C

− −
+ +

− − −
+

− − − −
+

− − − + +
+

− − − +

= +

= + +

= + + +
=

= + + + + +

= + + + + +

 

 

 

6. The Binomial Theorem for Negative and Non-Integral Indices 

 

So far we have been considering the binomial theorem in cases where the power of the 
expansion is a non-negative integer. In this section we briefly treat the cases where the power is a 
negative integer or an arbitrary real number. 

 

To begin our discussion we first extend the definition of the binomial coefficients to cases 
where the upper index is not necessarily a non-negative integer. 

 

Definition 6.1. (Binomial coefficient) 

For arbitrary real number n and positive integer r, we define 0 0nC =  and 

( 1) ( 2) ( 1)
!

n
r

n n n n rC
r

× − × − × × − +
= . 

 

Note that this is the same formula as we derived in Section 3. We simply extend it to cases 
where n is not necessarily a non-negative integer. 

 

To extend the binomial theorem to negative and non-integral indices, recall that 
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0
( 1)

n
n n r

r
r

x C x
=

+ =∑ . 

Since 0n
rC =  when r n>  (exercise), this can be written as 

0
( 1)n n r

r
r

x C x
∞

=

+ =∑ . 

When n is not a non-negative integer, the above formula gives an infinite series for the expansion of 
( 1)nx + . It can be proved that the series converges for | | 1x <  and it indeed converges to the 

expression on the left hand side. 

 

For instance, when 1n = − , we have 
1 2 3( 1) 1x x x x−+ = − + − + . 

We know that the (geometric) series on the right converges whenever | | 1x < , and the formula on 

the left represents the sum to infinity. 

 

 

7. Exercises 

 

1. Expand the following using the binomial theorem. 

(a) 4(2 3)x −        (b) 
62x

x
 − 
 

 

 

2. Find the coefficient of 2x  in the expansion of 

(a) 4 3(1 ) (2 )x x+ −       (b) 
4

2

32x
x

 − 
 

 

 

3. Prove that the constant term in the expansion of 4 2 n

x
x

 − 
 

 is non-zero if and only if n is a 

multiple of 5, and the constant term is never negative. 

 

4. Find all positive integers a, b so that in the expression (1 ) (1 )a bx x+ + + , the coefficients of x 

and 2x  are equal. 
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5. Let n and r be integers, 0 n r≤ < . Show that 0n
rC = . 

 

6. Prove that for all positive integers n, 
2 2 2 2 2 1

31 3 5 (2 1) nn C ++ + + + − = . 

 

7. Explain equation (3) in Section 5 using the combinatorial interpretation of the binomial 
coefficients. 

 

8. Prove the identity 1
1

m m m
r r rC C C +
− + =  by using the formula for the binomial coefficients directly. 

 

9. Re-do Example 5.3 by differentiating equation (1) in Section 3. 

 

10. Find the sum 
3 3 3 3
0 3 6 3

n n n n
nC C C C+ + + + . 

(Hint: Consider a primitive cube root of unity, i.e. a complex number ω  for which 
21 0ω ω+ + =  and 1ω ≠ .) 

 

11. Let n, r, k be integers such that 0 r k n≤ ≤ ≤ . 

(a) Prove that n k n n r
k r r k rC C C C −

−= . 

(b) Give a combinatorial interpretation of the equality in (a). 

 

12. The sequence of Catalan numbers 1, 1, 2, 5, 14, 42, … is given by the formula 

21
1

n
n nC C

n
=

+
    n = 0, 1, 2, … 

Prove that 1
2(2 1)

1n n
nC C

n −
−

=
+

 for all positive integers n. 

 

13. Let n be a fixed positive integer. Find, in terms of n, the number of n-digit positive integers 
with the following two properties: 

(a) Each digit is either 1, 2 or 3. 

(b) The number of 1’s is even. 


